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Abstract
In the paper, in a Hilbert space setting, a random time-dependent oligopolistic market
equilibrium problem in presence of both production and demand excesses is studied
and the random time-dependent Cournot–Nash equilibrium principle by means of a
stochastic variational inequality is characterized. Then, some existence results to such
problem are established and the stochastic continuity of the equilibrium solution is
proved. Moreover a simple numerical example illustrates the theoretical results.

Keywords Random time-dependent Cournot–Nash equilibrium principle ·
Oligopolistic market equilibrium problem · Stochastic variational inequalities

1 Introduction

The purpose of this note is to combine the new advances of the theory of stochastic
and time-dependent variational inequalities with the Nash equilibrium game, and to
propose an effective model of a oligopolistic market equilibrium problem. Taking into
account these new tools, we are able to generalize results which have been obtained
in the field of oligopolistic markets.

In the last years many authors (see [8–13]) developed the study of stochastic varia-
tional inequalities and random equilibriumproblems. Recently, a comprehensive study
on the stochastic variational inequalities with anticipativity in a dynamic multistage
setting is done in [19].
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In the last decade, the time-dependent variational formulation of the oligopolistic
market equilibrium problem was introduced and intensively studied starting by [1]. In
[3,4] the authors observed that during an economic crisis period the presence of pro-
duction excesses can be due to a demand decrease in demandmarkets and, on the other
hand, the presence of demand excesses may occur when the supply cannot satisfy the
demand, especially for fundamental goods. Moreover, the presence of both production
and demand excesses is a consequence of the fact that the physical transportation of
commodities between a firm and a demand market is evidently limited, therefore, it is
more realistic that some firms produce more fundamental good than they can send to
all the demand markets and, on the other hand, some of the demand markets require
more goods.

Themodel in presenceof uncertainty inwhichbothproduction anddemandexcesses
occur was analyzed in [2]. The development of the oligopolistic market equilibrium
problem under conditions of uncertainty arises because the constraints or the data are
often variable over time in a non-regular and unpredictable manner. It is sufficient to
think about unpredictable events and sudden accidents. A suitable choice is one in
which it is possible to handle random constraints. We consider for our model a Hilbert
space setting, which allows us to obtain existence results and to perform a complete
duality theory.

In this setting, we focus our attention on the study of a more general oligopolistic
market equilibrium problem with uncertainty and time-dependence. The time-
dependent formulation of equilibrium problems allows one to explore the dynamics
of adjustment processes in which a delay on time response is operating (as Beckmann
and Wallace stressed in [6]). In particular, we propose a time-dependent oligopolis-
tic market equilibrium problem in presence of both production and demand excesses
in condition of uncertainty. Recently, a new time-dependent weighted transportation
model in conditions of uncertainty was introduced in [5].

The paper is structured as follows. After this introductory section, in Sect. 2 we
introduce the random time-dependent oligopolistic market equilibrium problem. In
Sect. 3, we show some existence results for the random time-dependent equilibrium
distribution. In Sect. 4, we recall theKuratowski’s set convergence and some stochastic
continuity definitions. After that, the Kuratowski’s set convergence property for the
feasible set of our model is obtained. Thank to this property, we are able to prove
the stochastic continuity of the solution to the stochastic variational inequality which
expresses the random time-dependent Cournot–Nash equilibrium principle. In Sect. 5
the theoretical results are illustrated with the help of a two-player example.

2 Themodel

In this section we extend the random model for the oligopolistic market to the time-
dependent case. This generalization seems reasonable since the time-independent
model is quite unrealistic.
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The “natural” setting of the random time-dependent oligopolistic market equilib-
rium problemwith excesses involving the time and random variable will be the Hilbert
space L2([0, T ] × Ω,Rk,P), endowed with the inner product denoted by ⟨⟨·, ·⟩⟩.1

The model we will consider is the following: let Pi , i = 1, . . . ,m, be m firms,
that produce a homogeneous commodity and n demand markets Q j , j = 1, . . . , n,
that are generally spatially separated. Assume that the homogeneous commodity, pro-
duced by the m firms and consumed by the n markets, is considered depending by
random variables. Let pi , i = 1, . . . ,m, denote the random variable expressing the
nonnegative commodity output produced by firm Pi and suppose that pi = pi (t,ω),
(t,ω) ∈ [0, T ]×Ω . Let q j , j = 1, . . . , n, denote the random variable expressing the
nonnegative demand for the commodity of demandmarket Q j , namely q j = q j (t,ω),
(t,ω) ∈ [0, T ] × Ω. Let xi j , i = 1, . . . ,m, j = 1, . . . , n, denote the random vari-
able expressing the nonnegative commodity shipment between the supply producer
Pi and the demand market Q j , namely xi j = xi j (t,ω), (t,ω) ∈ [0, T ] × Ω. In
particular, let us set the vector xi (t,ω) = (xi1(t,ω), . . . , xin(t,ω)), i = 1, . . . ,m,
(t,ω) ∈ [0, T ]×Ω, as the strategy vector for the firm Pi . Let εi , i = 1, . . . ,m, denote
the random variable expressing the nonnegative production excess for the commodity
of the firm Pi , namely εi = εi (t,ω), (t,ω) ∈ [0, T ]×Ω . Let δ j , j = 1, . . . , n, denote
the random variable expressing the nonnegative demand excess for the commodity of
the demand market Q j , namely δ j = δ j (t,ω), with (t,ω) ∈ [0, T ] × Ω . To be more
precise the random variables pi , q j , εi , δ j lie in the L2 space as below the xi j .

Let us suppose that the following feasibility conditions hold:

pi (t,ω) =
n∑

j=1

xi j (t,ω)+ εi (t,ω), i = 1, . . . ,m, a.e. in [0, T ], P − a.s.,

q j (t,ω) =
m∑

i=1

xi j (t,ω)+ δ j (t,ω), j = 1, . . . , n, a.e. in [0, T ], P − a.s.

More precisely, the quantity produced by each firm Pi must be equal to the commod-
ity shipments from that firm to all the demand markets plus the production excess.
Moreover, the quantity demanded by each demand market Q j must be equal to the
commodity shipments from all the firms to that demand market plus the demand
excess. Taking into account that the production and the demand excesses are non-

1 In the Hilbert space L2([0, T ] ,Rk ,P), we define the canonical bilinear form on L2([0, T ] ,Rk ,P)∗ ×
L2([0, T ] ,Rk ,P), by

⟨⟨φ,w⟩⟩ :=
∫ T

0

∫

Ω
⟨φ(t,ω),w(t,ω)⟩ d td P,

where φ ∈ (L2([0, T ] ,Rk ,P))∗ = L2([0, T ] ,Rk ,P), w ∈ L2([0, T ] ,Rk ,P) and

⟨φ(t),w(t)⟩ =
k∑

l=1

φl (t)wl (t).

123



2482 A. Barbagallo, S. G. L. Bianco

negative random variables, we can rewrite the feasible conditions in the following
equivalent way:

n∑

j=1

xi j (t,ω) ≤ pi (t,ω), i = 1, . . . ,m, a.e. in [0, T ], P − a.s.,

m∑

i=1

xi j (t,ω) ≤ q j (t,ω), j = 1, . . . , n, a.e. in [0, T ], P − a.s.

Furthermore, we assume that the nonnegative commodity shipment between the
producer Pi and the demand market Q j belongs to L2([0, T ]× Ω,R+,P) and has to
satisfy two capacity constraints, namely there exist two nonnegative random variables
x, x ∈ L2([0, T ] × Ω,Rmn

+ ,P) such that

0 ≤ xi j (t,ω) ≤xi j (t,ω) ≤ xi j (t,ω),

∀ i = 1, . . . ,m, ∀ j = 1, . . . , n, a.e. in [0, T ], P − a.s.

As a consequence, the feasible set is given by:

K =
{
x ∈ L2([0, T ] × Ω,Rmn,P) :

xi j (t,ω) ≤ xi j (t,ω) ≤ xi j (t,ω), ∀i = 1, . . . ,m, ∀ j = 1, . . . , n,

a.e. in [0, T ], P − a.s. ,
n∑

j=1

xi j (t,ω) ≤ pi (t,ω), ∀i = 1, . . . ,m, a.e. in [0, T ], P − a.s. ,

m∑

i=1

xi j (t,ω) ≤ q j (t,ω), ∀ j = 1, . . . , n, a.e. in [0, T ], P − a.s.
}
. (1)

Let us note that K is a convex, closed and bounded of the Hilbert space L2([0, T ] ×
Ω,Rmn

+ ,P).
Let us associate a random variable denoting the production cost fi , i = 1, . . . ,m,

with each firm Pi , and assume that the production cost of a firm Pi may depend
upon the entire production pattern, namely, fi = fi (t, x(t,ω)), (t,ω) ∈ [0, T ] × Ω .
Analogously, let us associate a random variable denoting the demand price for unity
of the commodity d j , j = 1, . . . , n, with each demand market Q j , and assume that
the demand price of a demand market Q j may depend upon the entire consumption
pattern, namely, d j = d j (t, x(t,ω)), (t,ω) ∈ [0, T ] × Ω . Since production excesses
occur, we consider the random variable gi , i = 1, . . . ,m, expressing the storage cost
of the commodity produced by the firm Pi and assume that this cost may depend
upon the entire production pattern, namely, gi = gi (t, x(t,ω)), (t,ω) ∈ [0, T ] × Ω .
Finally, let ci j , i = 1, . . . ,m, j = 1, . . . , n, denote the random variable expressing
the transaction cost, which includes the transportation cost associated with trading
of commodities between firm Pi and demand market Q j . In our model, we assume
that the transaction cost depends upon the entire shipment pattern, namely, ci j =
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ci j (t, x(t,ω)), (t,ω) ∈ [0, T ] × Ω . As a consequence, the profit vi of the firm Pi ,
i = 1, . . . ,m, is

vi (t, x(t,ω)) =
n∑

j=1

d j (t, x(t,ω))xi j (t,ω) − fi (t, x(t,ω))+

−gi (t, x(t,ω)) −
n∑

j=1

ci j (t, x(t,ω))xi j (t,ω), a.e. in [0, T ],P − a.s.,

(2)

namely, it is equal to the price that the demand markets are disposed to pay minus the
production cost, the storage cost and the transportation cost.

In our model the m firms supply the commodity in a noncooperative fashion, each
one trying to maximize its own profit function considered the optimal distribution
pattern for the other firms, in a nondeterministic framework. We shall make suitable
assumptions (as in [2]) on the payoff functions vi (t, x(t,ω)) in order to determine a
nonnegative commodity distribution matrix-function x for which the m firms and the
n demand markets will be in a state of equilibrium as defined below with the random
generalized Cournot–Nash principle.

Definition 1 A feasible matrix-function x∗ ∈ K is a random time-dependent
oligopolistic market equilibrium distribution if and only if, for each i = 1, . . . ,m,
a.e. in [0,T] and P-a.s., it results

vi (x∗(t,ω)) ≥ vi (xi (t,ω), x̂∗
i (t,ω)), (3)

where x̂∗
i (t,ω) = (x∗

1 (t,ω), . . . , x
∗
i−1(t,ω), x

∗
i+1(t,ω), . . . , x

∗
m(t,ω)).

Let us denote by ∇Dv =
(

∂vi

∂xi j

)

i = 1, . . . ,m
j = 1, . . . , n

. Let us assume the following assump-

tions:

1. vi (·) is continuously differentiable for each i = 1, . . . ,m,,
2. ∇Dv(·) is a Carathéodory function such that

∃h ∈ L2([0, T ] × Ω,R+,P) : ∥∇Dv(x(t,ω))∥ ≤ h(t,ω) ∥x(t,ω)∥ ,
a.e. in [0, T ] ,P − a.s.,

3. vi (·) is pseudoconcave with respect to the variable xi , i = 1, . . . ,m, namely the
following condition holds (see [16])

〈
∂vi

∂xi
(x1, . . . , xi , . . . , xm), xi − yi

〉
≥ 0

⇒ vi (x1, . . . , xi , . . . , xm) ≥ vi (x1, . . . , yi , . . . , xm).
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Under assumptions 1., 2., 3. on the profit function, it is not difficult to establish the
equivalent variational formulation as in the next theorem. The claim follows using the
same technique in [4, Theorem 2.2].

Theorem 1 Let us assume that assumptions 1., 2., 3. are satisfied. x∗ ∈ K is a random
time-dependent oligopolistic market equilibrium if and only if it satisfies the stochastic
variational inequality

〈〈
−∇Dv(t, x∗), x − x∗〉〉

=
∫

Ω

∫ T

0
−

m∑

i=1

n∑

j=1

∂vi (x∗(ξ,ω))
∂xi j

(xi j (ξ,ω) − x∗
i j (ξ,ω)) dξ dP ≥ 0,

∀ x ∈ K. (4)

3 Existence results

In this section we will provide existence results for the random time-dependent
oligopolistic market equilibrium distribution. Firstly, we recall some definitions. Let
K be a subset of a reflexive Banach space X which dual is X∗.

Definition 2 An operator A : K → X∗ is said to be

– pseudomonotone in the sense of Karamardian (K-pseudomonotone) on K if for
every u, v ∈ K

⟨⟨A(v), u − v⟩⟩ ≥ 0 /⇒ ⟨⟨A(u), u − v⟩⟩ ≥ 0;

– strongly pseudomonotone with degree α > 0 on K , if there exists η > 0 such that,
for every u1, u2 ∈ K ,

⟨⟨A(v), u − v⟩⟩ ≥ 0 ⇒ ⟨⟨A(u), u − v⟩⟩ ≥ η∥u − v∥α;

pseudomonotone in the sense of Brézis (B-pseudomonotone) if:

(a) for every sequence {ur }weakly converging to u (shortly, ur⇀u) in K and such
that lim supr ⟨⟨A(ur ), ur − u⟩⟩ ≤ 0 it results that

lim inf
r

⟨⟨A(ur ), ur − v⟩⟩ ≥ ⟨⟨A(u), u − v⟩⟩ , ∀ v ∈ K ,

(b) for every v ∈ K the function u → ⟨⟨A(u), u − v⟩⟩ is lower bounded on the
bounded subsets of K .

Let us recall also the following definition for a convex subset K of X .
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Definition 3 An operator A : K → X∗ is said to be

– hemicontinuous in the sense of Fan (F-hemicontinuous) if for all v ∈ K , the
function

K ∋ u 1−→ ⟨⟨A(u), u − v⟩⟩

is weakly lower semi-continuous on K ;
– lower hemicontinuous along line segments if the function

K ∋ p 1−→ ⟨⟨A(p), u − v⟩⟩

is lower semi-continuous for all u, v ∈ K on the line segment [u, v].

Now we are able to present some existence results for the stochastic variational
inequality which expresses the random time-dependent market equilibrium principle.

Theorem 2 Let K be as in (1). Let us assume that assumptions 1., 2., 3. are satisfied.
Let A : L2([0, T ]× Ω,Rmn,P) → L2([0, T ]× Ω,Rmn,P) be the operator defined
by A =

(
− ∂vi

∂xi j
(x∗)

)
i = 1, . . . ,m
j = 1, . . . , n

. If A is B-pseudomonotone or F-hemicontinuous, then

the stochastic variational inequality:

〈〈
Ax∗, x − x∗〉〉 ≥ 0, ∀x ∈ K, (5)

admits a solution x∗ ∈ K.

Proof K is a nonempty, closed, convex and bounded subset of L2([0, T ]×Ω,Rmn,P)
and therefore it is a weakly compact subset of L2([0, T ]×Ω,Rmn,P). Then, the claim
is achieved by applying [18, Theorems 2.6 & 2.7].

Moreover, the following result holds:

Theorem 3 Let K be as in (1). Let us assume that assumptions 1., 2., 3. are satisfied.
Let A : L2([0, T ] × Ω,Rmn,P) → L2([0, T ] × Ω,Rmn,P) be the operator defined
by A =

(
− ∂vi (x∗)

∂xi j

)
i = 1, . . . ,m
j = 1, . . . , n

. If A is K-pseudomonotone and lower hemicontinuous

along line segments, then the stochastic variational inequality (5) admits a solution
x∗ ∈ K.

Proof Being K a weakly compact subset of L2([0, T ] × Ω,Rmn,P), the claim is
achieved making use of [18, Corollary 3.7].

It is not surprising that requiring stronger hypothesis on the operator A, one can
be obtained stronger results. In particular, if the operator A, in Theorem 3, is strongly
pseudomonotone and lower hemicontinuous along line segments, the solution to (5)
exists and is unique.
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Let us remark that if we assume that the profit function v is continuously differen-
tiable and verifies the condition:

∃c ≥ 0 : ∥∇Dv(x(t,ω))∥ ≤ c∥x(t,ω)∥ forP-a.s.ω ∈ Ω, a.e. t ∈ [0, T ]

then ∇Dv belongs to the class of Nemytskii operators (see [18]) and is lower hemi-
continuous along line segments.

4 Stochastic continuity result

In this section a stochastic regularity theorem will be proved. Indeed it will be shown
that a solution of (4) is stochastic continuous on [0, T ], provided that the feasible set
K defined in (1) verifies Kuratowski’s set convergence property.

4.1 Set convergence and stochastic processes

We recall, very briefly, the classical notion of set convergence for a given metric space
(X , d), introduced in the 50’s by Kuratowski (see [15]).

Let {Kr }r∈N be a sequence of subsets of X . Recall that

d − limr Kr = {x ∈ X : ∃{xr }r∈N eventually in Kr such that xr
d→ x},

and

d − limr Kr = {x ∈ X : ∃{xr }r∈N frequently in Kr such that xr
d→ x},

where eventually means that there exists δ ∈ N such that xr ∈ Kr for any r ≥ δ, and
frequently means that there exists an infinite subset N ⊆ N such that xr ∈ Kr for any
r ∈ N (in this last case, according to the notation given above, we also write that there
exists a subsequence {xkr }r∈N ⊆ {xr }r∈N such that xkr ∈ Kkr ).

Finally we are now able to recall the Kuratowski’s convergence of sets.

Definition 4 We say that {Kr }r∈N converges to some subset K ⊆ X in Kuratowski’s
sense, and we briefly write Kr → K , if d − limr Kr = d − limr Kr = K . Thus, in
order to verify that Kr → K , it suffices to check that

– d− limr Kr ⊆ K , i.e. for any sequence {xr }r∈N frequently in Kr such that xr
d→ x

for some x ∈ S, then x ∈ K ;
– K ⊂ d − limr Kr , i.e. for any x ∈ K there exists a sequence {xr }r∈N eventually in

Kr such that xr
d→ x .

Remark 1 We observe that the set convergence in Kuratowski’s sense can also be
expressed as follows:
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let (X , d) be a metric space and K a nonempty, closed and convex subset of X .
A sequence of nonempty, closed and convex sets {Kr }r∈N of X converges to K in
Kuratowski’s sense, as r → +∞, i.e. Kr → K , if and only if

(K1) for any x ∈ K , there exists a sequence {xr }r∈N converging to x ∈ X such that
xr lies in Kr for all r ∈ N,

(K2) for any subsequence {xr }r∈N converging to x ∈ X such that xr lies in Kr , for
all r ∈ N, then the limit x belongs to K .

Since we will show, under suitable hypothesis, that the solution to a stochastic
variational inequality is a continuous stochastic process (see e.g. [7] for a general
reference), it is useful to recall some of the most common definitions of continuity for
a stochastic process present in literature (see e.g. [7,14]).

Definition 5 A stochastic process Xt (ω) = X(t,ω) is said to be

(i) mean-square continuous at t if E(X2
t ) < ∞ and

lim
s→t

E(|Xs − Xt |2) = 0; (6)

(ii) stochastic continuous at t if, for every ϵ > 0, it holds

lim
s→t

P
(
{ω ∈ Ω : |X(s,ω) − X(t,ω)| ≥ ϵ}

)
= 0; (7)

(iii) sample-path continuous if, for P-almost every ω ∈ Ω , s → t implies X(s,ω) →
X(t,ω). It is said to be continuous on [0, T ] if X(t,ω) is continuous at t , for every
t ∈ [0, T ].

Remark 2 Let us note that themean-square continuity implies the stochastic continuity.
Moreover, if X(t,ω), t ∈ [0, T ] is a sample-path continuous stochastic process, then
it is mean-square continuous.

4.2 Stochastic continuity

Now,we are able to prove the stochastic continuity result for the solution of the random
time-dependent oligopolistic market equilibrium problem with excesses described
in Sect. 2. As before let us consider the set X = L2([0, T ] × Ω,Rmn

+ ,P) where
(Ω,F ,P) is a probability space. Notice that in the following theorem and proposition
it is required the additional hypothesis of continuity for the capacity constraints x, x
and for the output and demand p, q, in order to ensure Kuratowski’s convergence of
K.

Theorem 4 Let K be as in (1) in which we suppose that x, x, p, q are contin-
uous functions. Let us assume that assumptions 1., 2., 3. are satisfied. Let A :
L2([0, T ] × Ω,Rmn,P) → L2([0, T ] × Ω,Rmn,P) be the operator defined by

A =
(
− ∂vi (x∗)

∂xi j

)
i = 1, . . . ,m
j = 1, . . . , n

. Let us suppose that A is strongly pseudo-monotone with

degree α > 1. Then the solution x∗ = x∗(t,ω) to (4) is stochastic continuous on
[0, T ].
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In order to prove Theorem 4 we need the following

Proposition 1 Let K be the feasible set defined in (1) in which we suppose that
x, x, p, q are continuous functions. Then K verifies Kuratowski’s convergence with
respect to t , namely for any fixed ω ∈ Ω and tr → t as r → +∞ then
K(tr ,ω) → K(t,ω) in Kuratowski’s sense, where

K(t,ω) =
{
x(t,ω) ∈ Rmn :

xi j (t,ω) ≤ xi j (t,ω) ≤ xi j (t,ω), ∀i = 1, . . . ,m, ∀ j = 1, . . . , n,
n∑

j=1

xi j (t,ω) ≤ pi (t,ω), ∀i = 1, . . . ,m,

m∑

i=1

xi j (t,ω) ≤ q j (t,ω), ∀ j = 1, . . . , n
}
.

Proof It is sufficient to show that conditions (K1) and (K2) of Remark 1 hold true
for

K(tr ,ω) → K(t,ω).

This follows from similar computations contained in [4, Lemma 6], for ω fixed.

Now we are able to prove the stochastic continuity of the solution to (4).

Proof (of Theorem 4) By Remark 2, it will be sufficient to show the sample-path con-
tinuity of u. Fix (t,ω) ∈ [0, T ] × Ω , and a sequence {tr } in [0, T ] converging to
t as r → +∞ and let x∗(tr ,ω) be the unique solution of the stochastic variational
inequality

〈〈
A(tr , x∗(tr ,ω)), x(tr ,ω) − x∗(tr ,ω)

〉〉
≥ 0, ∀ x(tr ,ω) ∈ K(tr ,ω), ∀ r ∈ N. (8)

For a fixed (t,ω) ∈ [0, T ] × Ω , it suffices to show that, for any sequence of times
{tr } in [0, T ] converging to t as r → +∞, we have x∗(tr ,ω) → x∗(t,ω) as r → +∞.

Minty-Browder’s lemma in its generalized form ensures that for every (t,ω) ∈
[0, T ] × Ω we have

〈〈
A(t, x(t,ω)), x(t,ω) − x∗(t,ω)

〉〉
≥ 0, ∀ x(t,ω) ∈ K(t,ω).

It follows by Proposition 1, that for any x∗(t,ω) ∈ K(t,ω), there exists a sequence
{y(tr ,ω)}r∈N such that y(tr ,ω) ∈ K(tr ,ω) for r large enough and y(tr ,ω) →
x∗(t,ω). The continuity of function A implies that A(tr , y(tr ,ω)) → A(t, x∗(t,ω)).
For r large enough, setting x(tr ,ω) = y(tr ,ω) in (8), it holds

〈〈
A(tr , x∗(tr ,ω)), y(tr ,ω) − x∗(tr ,ω)

〉〉
≥ 0.
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Since A(t, ·) is strongly pseudo-monotone with degree α > 1, we have

η∥y(tr ,ω) − x∗(tr ,ω)∥α ≤
〈〈
A(tr , y(tr ,ω)), y(tr ,ω) − x∗(tr ,ω)

〉〉

≤ ∥A(tr , y(tr ,ω))∥∥y(tr ,ω) − x∗(tr ,ω)∥

and

∥y(tr ,ω) − x∗(tr ,ω)∥ ≤ η
1

1−α ∥A(tr , y(tr ,ω))∥
1

α−1 .

Finally, we have

∥x∗(tr ,ω)∥ ≤ ∥x∗(tr ,ω) − y(tr ,ω)∥ + ∥y(tr ,ω)∥
≤ η

1
1−α ∥A(tr , y(tr ,ω))∥

1
α−1 + ∥y(tr ,ω)∥,

showing that {x∗(tr ,ω)}r∈N is a bounded sequence. Thus, there exist y ∈ Rd and a
subsequence not relabeled and still denoted by {x∗(tr ,ω)}r∈N such that x∗(tr ,ω) ∈
K(tr ,ω), ∀ r ∈ N and x∗(tr ,ω) → y. The Kuratowski’s set convergence assumption
ensures that y ∈ K(t,ω).

Now, we are left to prove that y = x∗(t,ω). Again applying the generalized version
of Minty-Browder’s Lemma to any x∗(tr ,ω) gives

〈〈
A(tr , x(tr ,ω)), x(tr ,ω) − x∗(tr ,ω)

〉〉
≥ 0, ∀ x(tr ,ω) ∈ K(tr ,ω).

By Proposition 1, for any x(t,ω) ∈ K(t,ω), we can find {x(tr ,ω)}r∈N such that
x(tr ,ω) ∈ K(tr ,ω) for r large enough and x(tr ,ω) → x(t,ω). It follows

〈〈
A(tr , x(tr ,ω)), x(tr ,ω) − x∗(tr ,ω)

〉〉
≥ 0, ∀ x(tr ,ω) ∈ K(tr ,ω),

As r → +∞, we obtain

⟨⟨A(t, x(t,ω)), x(t,ω) − y⟩⟩ ≥ 0, ∀ x(t,ω) ∈ K(t,ω).

Taking into account the generalized version of Minty-Browder’s Lemma, it results

⟨⟨A(t, y), x(t,ω) − y⟩⟩ ≥ 0, ∀ x(t,ω) ∈ K(t,ω).

Finally, since the solution to (4) is unique, y = x∗(t,ω) and x∗(tr ,ω) → x∗(t,ω),
completing the proof.

5 Example

Let us describe in this section a numerical example for the time-dependent random
oligopolistic market equilibrium problem with excesses. Let us consider the market
network constituted by three firms P1, P2 and P3 which compete with two markets Q1
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and Q2. Let xi j (t,ω) be the commodity shipment from Pi to Q j , (i = 1, 2, 3, j =
1, 2) and assume, for fixed T > 0, that xi j (t,ω) ≤ xi j (t,ω) ≤ xi j (t,ω) holds, where
xi j (t,ω) and xi j (t,ω) are function on [0, T ]×Ω representing the capacity constraints.
Assume that xi j (t,ω) = t2 x̌i j (ω) and xi j (t,ω) = t2 x̂i j (ω) where x̂i j (ω) and x̌i j (ω)
are uniformly distributed random variables with probability density functions given
by:

fx̂i1(z) =
{ 1

2 , if 0 ≤ z ≤ 2,
0 elsewhere,

fx̂i2(z) =
{ 1

5 , if 0 ≤ z ≤ 5,
0 elsewhere,

fx̌i1(z) =
{ 1

25 , if 75 ≤ z ≤ 100,
0 elsewhere,

fx̌i2(z) =
{ 1

20 , if 80 ≤ z ≤ 100,
0 elsewhere.

Set now the maximal commodity production of Pi (i = 1, 2, 3) and the maximal
commodity demandofQ j ( j = 1, 2). Let us define pi (t,ω) = t2 pi (ω) andq j (t,ω) =
t2q j (ω) where the density function of pi (ω) and q j (ω) are defined by

f p1(z) =
{ 1

20 , if 80 ≤ z ≤ 100,
0, elsewhere

f p2(z) =
{ 1

10 , if 90 ≤ z ≤ 100,
0, elsewhere

f p3(z) =
{ 1

10 , if 230 ≤ z ≤ 240,
0, elsewhere

fq1(z) =
{ 1

30 , if 240 ≤ z ≤ 270,
0, elsewhere

fq2(z) =
{ 1

40 , if 150 ≤ z ≤ 190,
0, elsewhere

The feasible setK is then as in (1) with the above definition of xi j (t,ω), xi j (t,ω),
pi (t,ω), q j (t,ω).

Then we left to define the profit function vi (x(t,ω)) for the firms Pi , for i = 1, 2, 3.
We set

v1(x(t,ω)) = −3x211(t,ω) − x212(t,ω) − 4x231(t,ω)+ x12(t,ω)x21(t,ω)

+a1(t,ω)x11(t,ω)+ b1(t,ω)x12(t,ω)

v2(x(t,ω)) = −2x221(t,ω) − 3x222(t,ω) − x232(t,ω)+ x11(t,ω)x22(t,ω)

+a2(t,ω)x21(t,ω)+ b2(t,ω)x22(t,ω)
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v3(x(t,ω)) = −x231(t,ω) − 2x232(t,ω) − x221(t,ω)+ x12(t,ω)x31(t,ω)

+a3(t,ω)x31(t,ω)+ b3(t,ω)x32(t,ω)

where ai , bi (i = 1, 2, 3) are uniformly distributed random variables with supports:

spt a1 = [36, 108] spt b1 = [10, 40]
spt a2 = [40, 120] spt b2 = [10, 40]
spt a3 = [10, 40] spt b3 = [40, 120]

Let us compute the operator ∇Dv

−∇Dv(x) =

⎛

⎝
6x11 − a1 2x12 − x21 − b1
4x21 − a2 6x22 − x11 − b2

2x31 − x12 − a3 4x32 − b3

⎞

⎠ ,

where here, and in the following, we omit the arguments of the variables, simply
writing xi j instead of xi j (t,ω).

The equilibrium condition is expressed by the following variational inequality prob-
lem: find x∗ ∈ L2([0, T ] × Ω,R6

+,P) such that

〈〈
−∇Dv(x∗), x − x∗〉〉 ≥ 0, ∀ x ∈ K.

First observe that existence and uniqueness of the solution to problem above is
guaranteed by the theoretical result of Sect. 3. Then the solution is computed applying
the direct methods as described in [17]. We solve the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

6x∗
11 − a1 = 0

2x∗
12 − x∗

21 − b1 = 0
4x∗

21 − a2 = 0
6x∗

22 − x∗
11 − b2 = 0

2x∗
31 − x∗

12 − a3 = 0
4x∗

32 − b3 = 0

which gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗
11 = 1

6a1
x∗
12 = 1

4a2 + b1
x∗
21 = 1

4a2
x∗
22 = 1

6a1 + b2
x∗
31 = 1

4a2 + b1 + b3
x∗
32 = 1

4b3
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For the solution x∗ = x∗
i j are verified the following

spt x∗
11 = [6, 18] spt x∗

12 = [20, 60]
spt x∗

21 = [10, 30] spt x∗
22 = [16, 58]

spt x∗
31 = [60, 90] spt x∗

32 = [10, 30]

It is easy to check that the random vector x∗ belongs to K proving that x∗ is
the solution of the random time-dependent oligopolistic market equilibrium problem
with excesses. Again with simple computations it is possible to obtain the production
and demand excesses described by the random time-dependent function εi (t,ω) and
δ j (t,ω).
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